article

Does Time Really Flow? New Clues Come From a Century-Old Approach to Math

Over the past year, the Swiss physicist Nicolas Gisin has published four papers that attempt to dispel the fog surrounding time in physics. As Gisin sees it, the problem all along has been mathematical. Gisin argues that time in general and the time we call the present are easily expressed in a century-old mathematical language called intuitionist mathematics, which rejects the existence of numbers with infinitely many digits. When intuitionist math is used to describe the evolution of physical systems, it makes clear, according to Gisin, that “time really passes and new information is created.” Moreover, with this formalism, the strict determinism implied by Einstein’s equations gives way to a quantum-like unpredictability. If numbers are finite and limited in their precision, then nature itself is inherently imprecise, and thus unpredictable. Physicists are still digesting Gisin’s work — it’s not often that someone tries to reformulate the laws of physics in a new mathematical language — but many of those who have engaged with his arguments think they could potentially bridge the conceptual divide between the determinism of general relativity and the inherent randomness at the quantum scale.

Home About Contact